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The Freckel-Kontorova Model With Nonconvex Interparticle Interactions

S. Marianer, A. R. Bishop and J. Pouget

Los Alamos Netional Laboratory, Los Alamos, New Mexico 87545;" and ICTP, P. O. Box
586, 1-34100 Trieste, Italy.

We present an analyticai and numerical study of a chain of atoms moving in a periodic
.t;:j:lt.inll with nonlinear, noncouvex interparticle interactions, described by the
tonian
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H= % it + AW,
The ground stats is shown to be homogeneous for B < 1/8 and dimerized for B > 1/8. The
nonconvexity is shown to also play an important role when excitations are considored. In
the dimerizsed phase, we define the staggered urder parameter vq = (~1)n u, and map the
model to the on-site ¢4 problem. In cular we find a localised kink solution, v =
tgh(x/d), with a width d varying form infinity at B = 1/8 to zero at B = 3/16, where the
interparticle interactions in the ground state crossover from the nonconvex region to the
convex one. We also show that at this point the kinks are pinned to the lattica. These
results are verifled by a direct numerical simulation of the discrete model. Finite
tsmperature offects are discussed in terms of a dl%ucivc phase transition at B = 1/8
becoming order disorder transition at B = 3/16. en coupling between the springs is
introduced by adding a strain gradient term G(ua.) — 2un + up+ ()2 to the Hamiltonian, we
observe a crossover an inflnite kink width at B = 1/8 to a flnite width for B > 3/186,
doulﬁnlnod by the compatition between the affective double well and the interspring
coupling.

Physical systems with c:l:rﬂn' interactions that include incommensurate length
scales have bscome a subject of intense .nterest because they can lead both to modulated
und states and to unusual dycamies and excitations. Moet of the theoretical studies to
to have been limited to cases where the interparticle interactions are convex and whers

there are two leagth scales. For these cases it was shown (1) that the ground
states are always e or q'\::dpu'ldk and that the transitions are continuous.
Thiae results are valid oaly convex in cle interactions and it was shown by

Aubry, Feseer and Bishop g]. that first order phase transitions might occur when
noncoavexity is intreduesd. also Oriffiths et al. (3) and Marchand et al. (4). It is well
known that nonccavsx interparticle intarections can exist in condensed matter systems.
Erample are, the RKKY oqeciilatory exchange interactions between localised spins in
metals, and oediliating indivect interactions mediated by elastic strains {8). Nonconvex
interparticle intsractions are also precent in a Gincburg u apergy functional for the
strairs in metarials undergoing slastic phase transitions (¢.g. Barsch Kruinhansl (8)).

To stidy the effects of noaconvezity e use here an extention of the familiar (a.g. Aubry
and LeDeema (1)) Freakel-Koatorova maodel into which we introduce degenerate double
well interparticle npriegs. The Kamilionian for the system (s given by:

H-E %hzd-A(u".-u‘-o)‘-D(u".-u.-ab’—wduni (1)
3 is in genersl « model with competing lengths: L) 3 = a T Lo, the minima of the

double well spring L', = mﬁﬂ Ly = 2n, demnln the minima of the substrate

potential. However, we limit ourssives here to the study of the homogeneous cud dimerizad

phases by settinga = (, \.e. {wg competing lengthy. For this case the configuration where



the particles are at the minima of the substrate potential, uy = 0, is such that the
interparticle interaction energies are at their maxima. 't is then easy to see that the system
can lower its energy (for a large enough value of B) by dimerization, and the ground state
configuration is up, = §(-1)n ug where ug is determined bx the competition between the
luhtlt:;jto and inh.rpa.ﬂ:rc:lo energies: Substituting in (1) and minimizing with respact to ug
we obtain

4Au:—2Buo+ lf!lin(udl‘l)'O @

Eq. (2) has the solutions ug = 0 aad ug *((B-1/8)/(2A-1/192))1/2 where we have
approximated sin(w2) b u3 - 1/6u). Thus, for B < 1/8 the ground state will be
homogeneous, un = 0, while for B > 1/8 it will be dimerised.

To study excitations of the system in the dimerized phase, we consider first the staggered
order parameter v, = (-1)n u,. In the ground state v, = 0 (homogeneous phase)and vq = +
(=)ug/2 dimoriutrlong-nhort (short-long) springs, respectively. Substituting a continuum
Agﬂ-joximuon Vat: = vp T hv' + $h2v", 1n the Hamiltonian and equations of motion we
obtain:

Ha= V2 + v%228 - 48A0Y + 16A0° - 4B? - oalv) (3)

(4)
"= 8By — 64AL° = sinlv) + (28 ~ 48AV" - 48ANY

We have obtained traveling wave solutions to oﬁu:ﬂon (4) numericsally (Fig. 1), a limit of
which are the solitary wave sclutions of Fig. 2. physical meaning of the kink sclutious
in the context of our model is a change between two topo ly inequivalent ground states
from a “MW‘K:M length coaf guration at one ol the chain. to a "long-shor” one
main properties of the kink solutions are: (1) their width d is a
decreasi hncﬂonol&onlodgmlofﬂ;ud(ll) pinning of the kink occurs for B = 3/16
where the static kink width v nnd the contiacum approxzimation bresaks down. Since
equations (3) and (4) were obtained in a contituum approximation, we have checked that
the above rmprd.oﬂho kinks are valid for the diserete model (1) as well. To do this we
numaerically solved the equations of motion derived from (1), imposing, v!a voundary
conditions, & single kink in the chain. To obtain the static defect coniguration, we started
chdbym w “‘m mmwm ".&F'ﬁ.ﬁ:
n a Fm tu, to e
and checked that the final conflguration
static solutioa of the equetions of motion. For B < Y16 (Fig. 3a) the
» of the casin oy = l(-l)!“uqbanbcﬂﬁt is indeod
.

F
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> Y/1€ (Fig. 3b) che
All thees properties can be
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Fig. 1. Traveling wave solutions of eqn. (1). The sumbers are from the 44 terminology (71
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;’i‘. 2. The solitary kink solution obtained as an infinite period limit of solution No. 2 in
ig- 1.
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Fig. 3 The discrete solutions with one kink: (a) 1/8 < B < ¥/16;(b) B > 3/186.

We assume v to be small and expand sin(v) and cos(v) in equations (3) and (4) to O(v4),
Defining a dimensionless displacement W = vAug/2) we obtain:

Ha mdm’(ir'n T J(uJLol’W'\W"' + 2B - 1w o (3)

This is the Hamiltonian for the on-site ¢4 problem (7] with an efTective spring corstant C =
2B(1 - Nug/Lo)TW?), and a de E = (ug/2)UB - 1/8). We can thersfore apply known
results to the present problem. The main effect of the nonlinear interparticle intaraction is
to introduce a dependence on W in the effective spring constant C. This plays an important
role, determining the stability limits of the different iraveling wave solutions to (5), as will
be discussed elsewhere. In this report we focus on the effects of the nonlinearity on the
traveling kinks (fig. 2). The ptotic values of W in these solutionsare W = + fupasz -
+e wherez = x —ct and c is the kink velocity. the kink width d and its enargy E will thus
be given from the ¢4 theory as:



u v2
d= = {ZBII—J(u‘/Lo)zl/[B—I/BIl (6)

L, . 12 (Wb
E=Iu°[2m —3(uJLU) lB—l/GI} .

The kink's width is infinjte at the phase transition (B = 1/8) and decreasestod = 0 when u
reachcs the value Ly (at B = 316). It has zero creation gpergy both at the phase
trangition, where its amplitude vanishes, and when ug = Lo/V 3, where the whole chain
except one atom is in its ground staw. It is now easy to see that at the point ug = Lo/ V3 the
interparticle interaction changes from concave (for u < ) to convex (for ug > Lo/ V3I).
A similar effect was noted by Barsch and Krumhansl (1984) in their study of solitons in
ferroelastic materials. This point is seen more clearly when we consider the linearizec
phonons in the dimerized ground stats. The dispersion relation is then:

! = contu 2) + 4B(3(uyLy)’ - sinThr2) 8
Fork = n, this has a homogeneous component plus upward (downward) curvature when the
ground state is in the concave (convax) region of interparticle intaractions. Note that
although thcsg'round state is dimerized the linearized phonon consists of one
branch only. Splitting into acoustic and optic branches and in cular opening a gap at k
= n occurs oaly if nonlinear effects ars included. As will be shown elsewhere, these will
become important only at large enough amplitudes A: vis.

A> (2Bt - 3(UJL°”| + coelu J2)¥(3(u yL )} 9

The analogy with the ¢4 theory can be applied to moving kinks and to finite temperature
ofTects as well. For traveling mh the limiting sound velocity is ¢ = 2B(1 - 3(ug/Lg)¢,
which venishes when ug = Lo/V3. This explains both the ase of the kink's width wit!,
velocity (f1g. 2) end the pinning of the kink when ug = 3,

When finite temperatures are ~onsidered, we can dhdn'uhh two regions (Aubry 1975):
(1) the displacive on near B = \/8 with a characteristic "transition” temperature kyT =
(0.4) 2B(1-3(ug/Lg)2]|B - 1/8 Kug/2), vhich is the creation energy of Lae kink (eq. 7); and (2)
the order-disorcer region near B = 3’18 with a transition temperature kyT =
0.2(B - 1/8Y,u¢/?), which is the barrier height of the effective double well. These have the
following interpretation for the present model: At B = 1/8 the "melting” of the dimerized
springs is characterised bym domains (of the order of the kink's width) of nearly
undimerized portions of the ssparating dimerised phases. At B = 3/16, on the other
hand, there exist many dimerined r.&ou () ted t:] lsing walls (1.e. 0 idth of the order
of a lattice constant) in which the chain’s Smﬂn on changes froim a "long-short” to a
"short-long” spring coafiguration.

Finally we return to the shape of the xink when yp = Lo/V3. The sharp jump in the
velue of W from +uy2 to - is smoothed out if we include highor derivatives in the
continunm Hamiitonian or equivalently longer range interparticle interactions in the
discrets version. Such terms are premnt if we consider, for instance, an sxpansion of the
energy in the elastic siring. To see the effect of such a textn we add 1/2G (W")2 to the
H tonian (eq. 8). Substituticy a solution v = tgh(s/d) in the equation of motion we
obtain o l2adingorder in 1/d:

1 %
I_J(UU/I.OJ B-1/8 ! "3“‘1/1'0’ ‘ (Y
- + -

L1 L 1#) 8G

dx

Eqn. (10) shows a crossover f| an infinite width at B = 1/8 to a finite nonzeroune. d =
8G/(B - I/Bl}. at ug = Loy V3. Note that for G > 0 we obtain well defined kink solutions
for all valuesof B(ug~ LoasB —«).



To summarize we have presented a study of the und state and excitations of the
Frenkel-Kontorova model with nonconvex interparticle interactions, emphasizing the
special effects of the nonconvexity on the ground state and on the excitations. Our study
here has been limited to nonconvexity with two competing length scales. As indicated
earlier, a third length scale can be introduced by choosing a nonzero value for a in eqn. (1).
This was done by Marchand, Hood and Caille (4] in their study cf the ground states of (1),
assuming emall displacements un and thus replacing cos(up) by 1 - u? /2. The phase diagram
obtained in this study consists of various modulated configurations with first and second
order phase transitions between them. On the other hand Barsch et al. {6,8] have shown
that the present model with a strain gradient term may be useful in the description of twin
boundary dynamics in martensite materials. In this case the substrate potential models the
parent phase and the other terms are the expansion of the free energy as a function of the
strain and strain gradieats. We ars currently studying this model. We have obtained
additional ground stats configurations (as the strain gradient term is increased). These
conaist of confilgurations where u, = n-aforn = 1. Nanduy = nbforn = N+1..M (the
dimerized phase is one with M = N = 1, but different ﬁ N can be obtained as the
parameters are varied). The case (N,N) with N » 1 ccrresponds to the twin boundary lattice
described by Barsch et al. [8]. A complete phase diagram is in preparation ar.d will be
published slsswhere.

We are grateful for valuable discussion with Baruch Horovitz and Philip Rosenau.
Rosenau has recently discussed continuum approximation schemes for lattices with general
Lnt.:hrpadgcll)ooiﬁuncuou and substrate potantials (9,10). This work wat supported in part
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